Multivariate Longitudinal Data Analysis with Mixed Effects Hidden Markov Models
نویسنده
چکیده
Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies.
منابع مشابه
Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting
Hidden Markov models (HMMs) are a useful tool for capturing the behavior of overdispersed, autocorrelated data. These models have been applied to many different problems, including speech recognition, precipitation modeling, and gene finding and profiling. Typically, HMMs are applied to individual stochastic processes; HMMs for simultaneously modeling multiple processes—as in the longitudinal d...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملComputational Strategies for Multivariate Linear Mixed-Effects Models With Missing Values
This article presents new computational techniques for multivariate longitudinal or clustered data with missing values. Current methodology for linear mixed-effects models can accommodate imbalance or missing data in a single response variable, but it cannot handle missing values in multiple responses or additional covariates. Applying a multivariate extension of a popular linear mixed-effects ...
متن کاملOn the Use of Mixed Markov Models for Intensive Longitudinal Data
Markov modeling presents an attractive analytical framework for researchers who are interested in state-switching processes occurring within a person, dyad, family, group, or other system over time. Markov modeling is flexible and can be used with various types of data to study observed or latent state-switching processes, and can include subject-specific random effects to account for heterogen...
متن کاملSpace Time Modelling of Precipitation Using Hidden Markov Models
In this paper, we propose a new hidden Markov model (HMM) for the space-time evolution of daily rainfall. The hidden Markov chain represents the different meteorological regimes (“weather types”) and it is assumed that this variable explains the dynamics of the precipitation. The spatial structure within hidden weather types is modelled by censored power-transformed Gaussian distributions. It p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 71 3 شماره
صفحات -
تاریخ انتشار 2012